Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors.

نویسندگان

  • Kevin K Ogden
  • Stephen F Traynelis
چکیده

N-methyl-D-aspartate (NMDA) receptors are glutamate-gated ion channels whose function is critical for normal excitatory synaptic transmission in the brain and whose dysfunction has been implicated in several neurologic conditions. NMDA receptor function is subject to extensive allosteric regulation both by endogenous compounds and by exogenous small molecules. Elucidating the structural determinants and mechanism of action by which allosteric regulators control gating will enhance our understanding of NMDA receptor activation and facilitate the development of novel therapeutics. Here, we investigated the structural determinants for (3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ), a GluN2C/2D-selective positive allosteric modulator. We show that CIQ does not bind to the amino-terminal domain of the NMDA receptor and does not share structural determinants with modulators acting at the agonist-binding domain dimer interface or ion channel pore. Rather, we identified critical determinants of CIQ modulation in the region near the first transmembrane helix of GluN2D, including in a putative pre-M1 cuff helix that may influence channel gating. We also show that mutations within the GluN2D pre-M1 region alter open probability of the NMDA receptor. These results suggest a novel site of action for potentiation of NMDA receptors by small molecules and implicate the pre-M1 region in NMDA receptor gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology

N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includ...

متن کامل

A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain

Ionotropic glutamate receptors (iGluRs) mediate fast excitatory neurotransmission and are key nervous system drug targets. While diverse pharmacological tools have yielded insight into iGluR extracellular domain function, less is known about molecular mechanisms underlying the ion conduction gating process within the transmembrane domain (TMD). We have discovered a novel NMDAR positive alloster...

متن کامل

Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method.

Several forms of macroscopic N-methyl-D-aspartate (NMDA) receptor desensitization affect the amplitude and duration of postsynaptic responses. In addition to its functional significance, desensitization provides one means to examine the conformational coupling of ligand binding to channel gating. Segments flanking the ligand binding domain in the extracellular N terminus of the NMDA receptor NR...

متن کامل

Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits.

N-Methyl-D-aspartate (NMDA) receptors are modulated by extracellular spermine and protons and are blocked in a voltage-dependent manner by spermine and polyamine derivatives such as N1-dansyl-spermine (N1-DnsSpm). The effects of mutations in the first and third transmembrane domains (M1 and M3) and the pore-forming loop (M2) of NMDA receptor subunits were studied. Surprisingly, some mutations i...

متن کامل

Subunit-specific Contribution of Pore-forming Domains to NMDA Receptor Channel Structure and Gating

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that contribute to fundamental physiological processes such as learning and memory and, when dysfunctional, to pathophysiological conditions such as neurodegenerative diseases, stroke, and mental illness. NMDARs are obligate heteromultimers typically composed of NR1 and NR2 subunits with the different subunits underlying the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 2013